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S O M E  F O R M U L A T I O N S  O F  B O U N D A R Y - V A L U E  

P R O B L E M S  O F  L - P L A S T I C I T Y  

A. F .  R e v u z h e n k o  a n d  E .  I .  S h e m y a k i n  UDC 539.379 

1. The construct ion of ma themat i ca l  models  of a de formable  med ium is usually reduced to descr ib ing  
the re la t ions  between the s t r e s s  and s t ra in  (velocity) t e n s c r s .  Such an approach  is based on two hypotheses :  
1) The med ium is a s s um ed  continuous; 2) in cons t ruc t ing  the model  any inf ini tes imal  volume of the med ium is 

al lot ted the p r o p e r t i e s  of  a m a c r o s p e c i m e n  if the la t te r  is deformed under ce r ta in  boundary conditions allowing 
a homogeneous s t r e s s  distr ibution.  Thus,  if the spec imen  is deformed e las t ica l ly ,  then it is a s sumed  tha t  each  
volume e lemen t  is a lso  de fo rmed  e las t ica l ly .  This  assumpt ion  p e r m i t s  the descr ip t ion  of the e las t i c i ty  to r e -  
duce to the descr ip t ion  of the e las t ic  behav io r  of the volume e lement .  By analogy, the l eg i t imacy  of such a 
t r a n s f e r  is a lso a s s u m e d  in an invest igat ion of the p las t ic  behavior .  Hence,  as  in the theory  of elas~:icity, the 
p rob l em of cons t ruc t ing  a p las t ic  model  r educes  to descr ib ing  the p las t ic  behavior  of a volume e lement  of a 
continuous medium.  

However ,  a c l a s s  of m a t e r i a l s  can be mentioned for  which the hypothesis  of  identity between the p r o p e r -  
t ies of the spec imen  a'ad its vo lume e lement  is not sa t i s f ied  even approximate ly ,  Indeed, let a cer ta in  spec imen  
d isc lose  p las t ic  p rope r t i e s  under definite loads.  A si tuation is poss ib le  when the spec imen  is divided up into 
d i sc re t e  sl ip su r f ace s  on s e p a r a t e  par t s  (blocks) under the loads mentioned. In this  case  the plas t ic  p rope r t i e s  
of the spec imen  a r e  en t i re ly  r e l a t ed  to not only the inelast ic  s t r a ins  of the blocks but also to the i r  r e la t ive  sl ips.  
If  the blocks a r e  deformed e las t ica l ly ,  then the p las t ic  p rope r t i e s  of the spec imen  depend only on the i r  re la t ive  
sl ips.  
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T h e r e f o r e ,  th ree  s tages  of m a t e r i a l  deformat ion  can be ex t rac ted  in the g e n e r a l c a s e :  1) e last ic  s t ra in ;  
2) p las t ic  s t ra in ;  3) s t r a in  under  shea r  local izat ion condit ions.  We designate  ma t e r i a l  s t ra in  in the th i rd  s tage 
as the L - p l a s t i c  s ta te .  

Natural ly ,  some  of the s t r a i n  s tages  can be mi s s ing  for  definite m a t e r i a l s .  Moreover ,  the rea l iza t ion  of 
any s tage depends on the specif ic  loading conditions.  

Methods for  the t heo re t i ca l  analys is  of the e las t ic  and plast ic  s t r a ins  a re  based  on the two a b o v e - m e n -  
tioned hypotheses  and a r e  c lose  in the sense  that  the model  cons t ruc t ion  is reduced  in both cases  to a d e s c r i p -  
t ion of the s t r e s s  and s t r a in  (velocity) re la t ions  cha r ac t e r i z i ng  the s ta te  of the volume element .  Passage  to the 
volume e lement  is imposs ib le  for  the L-p la s t i c  s tage of the s t r a in  and, hence ,  new p rob lems  a r i s e  in the de- 
sc r ip t ion  of L-plas t ic i ty :  formula t ion  of the c r i t e r ion  for  the appea rance  of s l ip s u r f a c e s ,  de terminat ion of the 
re la t ionsh ip  between the s l ip with a d imensional i ty  of length, along the s l ip su r face  and the appropr ia t e  s t r e s s e s ;  
the descr ip t ion  of the m a t e r i a l  p r o p e r t i e s  on which the spac ing  between the s l ip su r faces  can depend, etc. Ex-  
pe r imen t s  with different  so i l s ,  f r i ab le  bodies ,  mountain rocks ,  me t a l s ,  et al. show that in many cases  these  
m a t e r i a l s  behave  as L-plas t ics~  i .e . ,  under  sufficient  s t r e s s  the m a t e r i a l s  sa t i s fy  the imposed boundary con-  
ditions not only by the appea rance  of p las t ic  domains ,  but also by sl ipping over  s epa ra t e  su r faces  [1-6]. The 
t r a n s f e r  to the  L -p l a s t i c  s tage  can be due to different  causes :  the lo s ses  of s tabi l i ty  of the s t ra in  p r o ce s s  
without local iza t ion [6] (par t i cu la r ly  under loading conditions allowing homogeneous s t ra in  [4]), initial inhomo- 
geneity of the  m a t e r i a l  ( there is at tenuation ove r  isola ted su r f aces ) ,  etc. 

The local iza t ion  p rope r t y  played a fundamental  par t  in the  f i r s t  s tages  of the development  of soil  mech an -  
i cs .  In p a r t i c u l a r ,  the l imi t  condition of dry  f r ic t ion was introduced by Coulomb for local izat ion s u r f a c e s ,  and 
was meaningful  only on these  su r f aces .  Then Cut ter  introduced the hypothesis  about satisfying the Coulomb 
hypothes is  at each point of  the de fo rmable  m a s s .  This  hypothesis  gave a th rus t  to new formula t ions  and solu-  
tions of  the  p rob l em s  in soi l  mechan ics .  At p r e sen t ,  two d i rec t ions  a re  being deve lopedin  so i lmechan i c s  [7]. 
The r e su l t s  obtained within the f r a m e w o r k  of the f i r s t  d i rec t ion a r e  cons idered  approx imate ,  engineer ing r e su l t s ,  
while the r e su l t s  obtained within the f r a m e w o r k  of the  Cutter  hypothesis  a r e  exact.  However ,  it should be 
noted that  a ccu rac y  in this  ca se  is kept in mind not in the sense  of  a m o r e  adequate descr ip t ion  of the actual  
p r o c e s s e s  but in the sense  of methods of solving the fo rmula ted  ma thema t i ca l  problem.  The approx imate  
nature  of the r e su l t s  of the f i r s t  d i rec t ion is not r e l a t ed  to its p r inc ip les  but to the fact  that within the f r a m e -  
work  of this  d i rec t ion  m a t e r i a l  de format ion  outside the local izat ion su r f aces  is not usual ly cons idered  and the 
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surfaces themselves are  assumed known in advance with a certain arb[trarfness.  At the same t ime,  within the 
framework of models based on the Cutterhypothesis,  the mathematical problem is solved ordinarily without the 
introduction of additional hypotheses and, hence, the methods of solution and the results are considered exact. 
If the meaning of degree of adequacy in the description of the actual processes were to be ascribed to the ac- 
curacy concept, then in some cases the napproximate~ solutions of the f irs t  direction can turn out to be much 
more accurate than the ~,exactW solutions of the second direction. Moreover, within the framework of the f i rs t  
direction, the part .of the additional hypotheses can be reduced, and then the ~accuracy" of the results of both 
directions will be comparable even in the sense of the r igor of the mathematical methods used. 

The main reason whereby the opposition of these directions is not correc t  in the general case is related 
to the fact that different stages of material  deformation are described within~their frameworks: The Coulomb 
direction re fers  to the L-plastic stage of deformation and is substantially a set of engineering methods to 
solve L-plasticity problems, while the Cutter direction refers  to the second plastic stage of deformation. 

The facts of localization are  not expressed as clearly in metals as in soils and, hence, the direction 
analogous to the Coulomb direction has practically not been developed in plasticity theory. The mathematical 
theory of plasticity f rom the t ime of its origin was developed along the second path, on the basis of the hypoth- 
esis  of complying with some plasticity condition at every point of the deformable medium. 

Meanwhile sufficiently many experimental facts exist on localization of shear  strains in metals. These 
data show that the L-plastic stage of deformation plays an essential part even for metals,  and the direction 
analogous to the Coulomb direction in soil mechanics should be developed in plasticity theory also. 

The deformation stage in shear  localization conditions is closely related to rupture. Rupture can pro- 
visionally be considered the last ,  fourth stage of material  deformation. Rupture is understood to be the process 
of separating material  into parts ,  which substantially influences the functional features of the material  (the con- 
struction) because of the disappearance of interaction over the appropriate surfaces.  The L-plast ic  stage de- 
notes ~ocallzation of the deformation under conditions when sufficiently strong interaction forces exist on the 
localization surfaces and the material  (structure) as a whole does not alter its functional cr i ter ia .  For in- 
stance, under definite conditions compression of specimens results In the appearance Of domains of res t r ic ted  
deformation ~ the compressing slabs (compression nuclei, domains of direct influence of the stab), which are 
separated from domains abutting on the specimen free surface (domains of f ree  surface influence) by certain 
localization surfaces [2] (the L-plastic stage of deformation). At this deformation stage, the specimen con- 
tinues to exert  resis tance to compression and will outwardly behave exactly as under plastic compression. A 
fur ther  L-plastic deformation of the specimen results in the formation of new surfaces (vertical because of the 
disjoining effect of the domains abutting on the slabs, or  oblique, sometimes coinciding with the localization 
surfaces) over which there  is alrea~ly no interaction between the material  particles; the specimen alters its 
functional cr i ter ia .  This is the rupture stage. 

Therefore ,  there  exists a broad class of problems in which the L-plastic stage of deformation plays a 
substantial part and should be Oaken into account in theoretical  computations; L-plastic formulations areneeded 
in problems of unlaxial and multiaxial compression, the imprint of a press ,  the insertion of a wedge, the dump- 
ing of welds and support walls in problems of the motion of materials  in converging channels [6], the deforma- 
tion of mountain rock around drifts,  problems of pressure  treatment of metals and powders, etc. 

l~ follows from the definition that the L-plasticity models abut on the class of rupture models in which 
the interaction between crack edges is taken into account [8-11]. 

Let us examine certain formulations of the boundary value problems of L-plasticity in the case of plane 
strain or  the plane s t ress  state. The solution of the boundary value problems can be reduced to seeking dis- 
continuous functions which bring an extremum to definite functionals which depend on both the behavior of the 
function in the smoothness domains and on the magnitudes of their  discontinuities. 

2. Such an approach can be llluw by the following example. Let anelast ic specimenunderst ra inplane 
conditions be compressed by a heavy body M (Fig. 1). The height of the specimen ts h, the width l, there  is not 
displacement at the point x -- h, but it equal-u ~ at the point x= 0. Let  us assume that under certain boundary con- 
ditions a slip line with the slope (~r/2-~) to the specimen axis appears in the specimen. Let R denote the mag- 
nitude of the slip along a line. Then the total displacement of the point x = 0 is comprised of two parts:  t he  
displacement u e because of  elastic deformations of the specimen, and the displacement R sin ~ because of the 
s l i p ;  i . e . ,  

u ~ -~ u~ + R sin ~. (2.1) 
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Let us assume the energy dissipation U per  unit length of the slip line depends only on the magnitude of 
the slip R. Under active loading, the dissipation U(R) can provis ional lybe  considered the "potential" energy of 
the body s t o r e d i n t h e  line of discontinuity if thermal  effects are  neglected. Then the total "potential ,  energy 
of the sy s t em s p e c i m e n - h e a v y  body has the form 

lU ( R) i l E u " 
t V = m g [ h - - ( u e + R s i n ~ )  ] ~ cosfi ~- 2 h l----~ ( e)", (2.2) 

where mg is the body weight; and E: v are  elast ic  constants.  The energy W is a function of two var iables:  u e 
and R. Let us assume that only those of the all possible values of Ue, R are  real  which br ing the energy W to 
a minimum. We shall  l a te r  impose condition (2.1) on the variables  u e and R, where the quantity u ~ (the loading 
parameter )  is given. The requirement  of s ta t ionari ty  of (2.2) resul ts  in a final equation in R, 

U R (R) = -- -Z/{ § ~ u~ (2.3) 

where )~ = i_-~s in2  ~ cos ~ > 0. The express ion for the second variat ion shows that the equilibrium of (2.3) will  

be stable for URR > - X / h  and unstable or  indifferent in the remaining cases .  The derivative UR has the mean-  
ing of a tangential  s t r e s s  on the slip line (Fig. 2). The condition relat ing the tangential  s t r e s s  to the slip with 
a length dimenstonali ty was introduced in [9] and for a general izat ion of continual models [12, 13] in [14]. It is 
convenient to investigate the solution of (2.3) graphical ly  on the (UR,.R) plane. Let the loading pa ramete r  in- 
c r e a s e  monotonically f rom zero.  Then for  0 ~ u  ~ <u 1 the re  are  no shears  along the slip line and the whole speci-  
men is deformed ent i re ly elast ical ly.  Under fur ther  loading u 1 _<u ~ < u 2 the slip line s ta r t s  to function and the 
s l ip s  increase  monotonically f r o m  0 to R ,  (see Fig. 2). The specimen deformation is stable at this stage. 
Later ,  two substantial ly different s t ra in  modes are  possible.  If the specimen length is less than some cr i t ical  
(h < -)t/URR)' ~'alue for  given e las t ic  p roper t i e s  of the spec imen and the s t r e s s - s l i p  diagram, then the s t ra in  on 

the descending branch will be stable;  i.e., the slip R will increase  monotonically for u _>u s where a smal l  in- 
c r e a s e  in the sl ip R will co r respond  to a smal l  increase  in the loading paramete r .  For  a sufficiently long speci-  
men (or a sufficiently steep descending branch,  if the specimen length and its elast ic charac te r i s t i c s  are  fixed), 
the stabil i ty of the s t ra in  p rocess  is spoiled and the magnitude of the slip changes by a jump f rom R ,  to some 
value R ~ (see Fig. 2). Situations are  also possible when the deformation is stable on some sections of the de- 
scending branch and unstable on others .  All the pa r ame te r s  ul, u2, R , ,  R ~ can be determined f rom (2.3). 

Let us examine the mechanical  meaning of instability. Two processes  occur  simultaneously on the de- 
scending branch:  energy dissipation on the slip line and diminution of the potential elastic energy of the mate-  
r ia l  o f f t he  line. If the energy l iberated is less than is dissipated,  then the s t ra in  process  is stable and can be 
continued only under the supply of energy f rom outside. If the energy l iberated is g rea te r  than is dissipated, 
then the s t ra in  is unstable and the sl ips increase  because  of the internal r e sources  of the material .  Part  of the 
energy hence goes over  into kinetic energy.  Analogous effects hold in the continual model also [14]. In pr inci-  
ple, the real izat ion of such an experiment with controllable displacements on the boundary will allow the deter -  
mination of the d iagram U(R). 

Let us note that all the deductions considered follow f rom the variat ional  principle taken and could be 
obtained by direct  methods for the minimizat ion of the energy W. Therefore ,  the application of a variat ional  
principle permits  determinat ion of the instant at which shears  s tar t  along the slip line, solution of the problem 
of stable development of the sl ip line, determination of the loading pa ramete r  for which unstable development 
s t a r t s ,  calculation of the part  of the elast ic  energy which goes over  into kinetic energy during the unstable 
p rocess ,  and considerat ion of the fur ther  s t ra in  when the slip again goes over  into the stable mode. The pos- 
sibilities mentioned a re  conserved  even in the general  situation of plane and three-d imensional  strain.  

3. Let us consider  the plane s t ra ta  of an L-plas t ic  mater ia l .  Let L be the line of a possible discontinuity, 
n, ra the  normal  and tangent vec to rs  to the line, and ~ the angle between the vector  n and the axis Ox 1. Let ul, 
u2, vl, v 2 denote components of the displacement vector  in the domains Su, Sv (Fig. 3). The normal  component 
of the displacement  is continuous on the line L, 

(vl -- ul) cos o: -]- (v2 -- u~) sin ~ = 0, (3.1) 

but the tangential  component can experience a discontinuity R: 

R = --(vl --  ul) sin ~ ~ (v2 -- u~) cos a. (3.2) 

We shall designate the magnitude of the discontinuity the slip. Let us assume that the energy dissipation 
U per  unit length of the slip line only depends on the magnitude of the slip (3.2) and the coordinates:  U =U(R, 
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xl, x2). Let F(ui, Pij, xi) and F(vi, qij, xi) denote the potential  energy  of unit "volume" of m a t e r i a l  outside the 
s l ip  line. Here  i, j = I ,  2; Pi] =0ui/0xj; qi] = 0v i /0x j ,Fp t2  -= FP21' Fq12 ~ Fql2" On ce r ta in  sec t ions  Fu, Fv of the 
outer  boundary of the domains Su, S v let  the s t r e s s  vec tor  ~ Xi} be given as a function of the boundary dis-  
p lacements ,  where  a potent ial  r  1, u2):dr u2)dUl+X2(ut, u2)du2 exis ts .  An analogous condition is also 
sa t i s f ied  on 17v. The case  when the functions Xi(u j) r educe  to a constant  c o r r e s p o n d s  to given boundary s t r e s s e s .  
Then the total  "potent ia l"  'energy of the s y s t e m  has  the fo rm 

W =  .( F (u~, Pz], x,) ds + [ F(c, i, q~.~, x~) ds + [ U(B,; x,) dl - -  [ (i)_ (ui) d! --  f (P (re) dl. (3.3) 

If  t he r e  a r e  s eve ra l  l ines of poss ib le  sl ip,  then the appropr ia te  summat ions  should be in (3.3). To cut dow-n the 
wri t ing,  let us l imi t  ou r se lves  to the case  of one line. The r e su l t s  a r e  analogous in the genera l  ease .  The ex-  
p ress ion  (3.3) is a functional in the line of poss ib le  discontiniuty L and the d i sp lacement  field. Let us f i r s t  
a s s u m e  that the line L is known f rom additional cons idera t ions  and is not var ied .  Let  us  introduce the fo l -  
lowing var ia t iona l  pr inciple:  Out of all  the k inemat ica l ly  poss ib le  d isp lacement  fields sa t i s fying the continuity 
condition (3.1) and the boundary  conditions in the d i sp lacements ,  that which makes  the functional W a min imum 
will be real .  The n e c e s s a r y  condition for  min imal i ty  r e su l t s  in the  following equations in the domains Su, Sv: 

0 0 F ~  - ~ {e~j} = % F~  _ ~ { F ~ }  = 0~, (3.4) 

the boundary conditions on Fu, Fv: 
Fpi i cos ~ + Fp~ 2 sin $ = Xi (ul, u2), 

Fqi~ cos r + Fqi 2 sin ~ = X i (vl, v2), 
(3.5) 

and the conditions on the line of poss ib le  discontinuity: 

F;)~ cos a + fp l  2 sin a = Fqi ~ cos ~z -}- Fqi 2 s i n  a = , ~ i ;  ( 3 . 6 )  

- -  sin ~Z1 + cos ~E2 = U R, (3.7) 

where  the b r a c e s  denote the to ta l  der ivat ive;  the subsc r ip t  in the right side of (3.4) shows that the summat ion  
is c a r r i e d  out only over  the subsc r ip t  j; r is the angle between the no rma l  to the ou te r  contour and the axis Ox I. 
Equations (3.4) a r e  the equi l ibr ium equations in d i sp lacements ;  (3.5) a re  the boundary conditions for  the 
s t r e s s e s ,  and (3.6) is the continuity condition for  the tangential  and no rma l  s t r e s s  t enso r  components  to the 
line L. The l imit  of the tangent ia l  s t r e s s  in the domains Su, S v upon approaching the line L is on the left in 
condition (3.7), while the tangent ia l  s t r e s s  UR=T,  which is genera ted  on the line because  of the s l ip  R, is on the 
right.  

T h e r e f o r e ,  min imiza t ion  of the functional W under  the condition of continuity of the normal  d isp lacement  
r e su l t s  in a c losed s y s t e m  of equations,  na tura l  boundary condit ions,  and natura l  conditions for  continuity on 
the line of poss ib le  slip. The co ro l l a r i e s  obtained ver i fy  the appl icabi l i ty  of the var ia t iona l  pr inciple  introduced. 

The formula t ion  cons idered  above is  subs tant ia l ly  s emi inve r se  since the Hoes of poss ib le  slip a re  
a s sumed  known e i ther  f r o m  exper imen ta l  data or  f r o m  s y m m e t r y  conditions or  f r o m  additional cons idera t ions .  
In an exact formula t ion  the l ines should be de te rmined  during solution of the problem.  If the line is not fixed 
in advance,  then the to ta l  "potential,,  energy  W is a functional of the d isp lacement  field and the line of poss ible  
discontinuity.  The min imum of the functional which is r eached  in the d isp lacement  field (3.4) is a functional in 
the line of poss ib le  slip. It is na tura l  to cons ider  such l ines that  reduce  the total  "potent ia l ,  energy ~e t h e  
deepes t  m in imum .  In this  case  the p rob lem reduces  to seeking  the min imum of the functional W under  condi-  
t ions when both the d i sp lacement  field and the posit ion of the s l ip line admit  va r ia t ion .  

Let  xi = x i ( t ) , t  ~ [tl, t.21 be the p a r a m e t e r i c  equations of the curve  L, a= ~ f ( x ~ ) i +  (x'2) z. The symbol  5 
denotes the var ia t ion  of the functions for  f ixed a rgumen t s  and the symbol  6 the va r i a t ion  under  the condition 
that  the a r g u m e n t s  a r e  a lso  va r i ed .  We denote the va r i a t ions  of the a rgumen t s  t h e m s e l v e s  by 5x i. We con-  
s ide r  the va r i ed  line L '  c lose  to  L in the sense  of a f i r s t - o r d e r  n e a r n e s s  (Sxi << 1, 5x~ << 1). We denote the 

? t 
var ied  domains  Su, Sv by Su, S v, Each of the in te rsec t ions  (S~ N S~) (S~ F/S~) decomposes  into a number  of 
s imply  connected domains  Pk,  Nk (Fig. 4). We ex t r ac t  the sums  of double in tegra ls  ove r  the domains Pk,  Nk 
f rom the var ia t ion  5 W and conver t  them to the f o r m  

h Nh tt 
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w h e r e  Q = F(ui. . . )  - F(v i ...). Let  us examine  the  c o n s t r a i n t s  on the l ine of poss ib le  sl ip.  The  cont inui ty  con-  
di t ion (3.1) r e s u l t s  in a r e l a t i on  on the  va r i a t ion  

w h e r e  5~ = ~Sz~--x~$x'~ and 
+ (4 )  , 

(-Sv~ ---~u~) cos ~ § (-~v,_ ---~u2)sin a § R 8a = 0, (3.8) 

~ u l  = 8u~ ~- p ~ x ~ ,  80~ = 8v~ § q~ "~x~, (3.9) 

and the  values  o f  all  the  funct ions  can  be  t aken  on L. Equat ions  (3.8) and (3.9) in combina t ion  with the  equation 
- ( S v l - S u l )  s in  ~ + (Sv 2 - 5u2)cos o~ = 5R f o r m  a c l o s e d  s y s t e m  in the  d i f f e rence  ( S v i - S u i ) .  Let  us conve r t  the  
c u r v i l i n e a r  in t eg ra l  o v e r  L into an o r d i n a r y  defini te  in tegra l .  Then W can be  c o n s i d e r e d  as a funct ional  in 
vi(x]) , ui(x ]) and xi(t) , w h e r e  ou ts ide  the  s l ip  l ines  all  the  va r i a t i ons  5ui ,  5v  i a r e  independent ,  whi le  r e l a t e d  to 
one ' eond i t  [on [(3.8) ] on  the l ine.  T h e r e f o r e ,  only  f ive of  the  s ix va r  iat ions 5 u I ,  5 vi,  5 xi wil l  be independent on 
the l ine.  I t  is conven ien t  to  s e l e c t  the  v a r i a t i o n s  (Sui § 5vi), 5xi, and 5R as  independent .  Omi t t ing  
f u r t h e r  c a l cu l a t i ons ,  we p r e s e n t  the f inal  r e su l t s .  The e x t r e m u m  of the  to ta l  "potent ia l"  e n e r g y  is r e a c h e d  if 
the  d i scont inuous  d i s p l a c e m e n t  f ield sa t i s f i e s  the  r e l a t i onsh ips  (3.4)-(3.7),  and the  l ine of d iscont inui ty  s a t i s -  
f ies the  equat ions  

adt R s i n a - -  Ucos a + b~.. q- Q sin cz -~ A., = O, 

(3.10) 

w h e r e  

En = ~l cos ~ -t- Y.., sin r~; Al = (qH --  pii)Z~ + (q~.I --  p:l)V:; 

Az = (ql.. - -  p,z)Zt § (q~_~. --  p~..)E~. 

Equat ions  (3.10) have  been  obta ined  as  a r e su l t  of  equat ing the coef f ic ien t s  of  the  va r i a t ions  5x l ,  5 x  2 to  
ze ro .  Since both  va r i a t i ons  a r e  c o n s i d e r e d  independent  fo r  t 1 < t < t2, then in format ion  about the  va r i a t ion  of the  
l ine of  d i scont inu i ty  a long it should  be conta ined in (3.10) a lso.  tt is na tu r a l  tha t  no condi t ions  should be ob-  
t a ined  on L in such  a va r i a t i on .  Indeed,  the  s y s t e m  (3.10) can  be  c o n v e r t e d  to  the  f o r m  

d ( R ~ n )  -~- V dr162 ad---'~ ~ ~ Ux, cos cr ~ Ux~ sin a + Q + At cos ~ 7- A., sin a = 0, 

(3.11) 
dU do~ 
adt ~ R Z n  ~ - -  Ux, sin ~ -t- Ux~ cos ~ --  AI sin r ~ A~ cos tz --~ 0,~ 

w h e r e  it can  be shown by d i r ec t  c o n f i r m a t i o n  that  the  las t  equal i ty  is sa t i s f i ed  ident ical ly .  

Let  us examine  t h e  na t u r a l  b o u n d a r y  condi t ions  for  the  l ine (3.11). Let  us f i r s t  note  that  the ends o f  the  
l ine  should  l ie  on the  ou t e r  con tou r ,  i . e . ,  at t he  points  t = t l ,  t 2, 

~xi = 8"H sin r ~x ,  = - - 8 f i  cos ~:~ (3.12) 

w h e r e  5H > 0 c o r r e s p o n d s  to  sh i f t ing  the  point t 1 t o w a r d s  t he  domain  Su and the  point t 2 t owards  the  domain  S v 
(see Fig.  4). M e m b e r s  r e p r e s e n t i n g  the  va lue  of  c e r t a i n  funct ions  at the  points  t l ,  t 2 can be ex t r ac t ed  f r o m  the  
e x p r e s s i o n  f o r  the  va r i a t i on  of  the  to t a l  , po ten t i a l "  e n e r g y  W. The  r e q u i r e m e n t  of  m in ima l i t y  of  the funct ional  
W under  the  c o n s t r a i n t s  (3.12) r e s u l t s  in def ini te  b o u n d a r y  condi t ions  at the points  t l ,  t 2. Let us cons ide r  the  
condi t ion  at t he  point t 2. The  r e s u l t s  a r e  analogous  f o r  the  point t 1. It fol lows f r o m  the  condi t ion 5 W  =0 that  

f o r  t = % ,  5 H ~  0, 

--[U(R,~ xl ,  x~) cos (~ - -  r + E n / / s i n  (~ --  ~)] + c - -  0,  ( 3 . 1 3 )  

w h e r e  c is a c o m p o n e n t  r e f e r r e d  to  ~H which  can a p p e a r  in the  ca lcu la t ion  o f  the va r i a t ion  

r~ ~ r~ 'r~ 

w h e r e  r u ,  F v a r e  c o n t o u r s  of  r u ,  r v a f te r  the  va r i a t i on  o f  the  l ine L. Let cont inuous d i sp l acemen t s  be given 
T T 

in a t w o - s i d e d  ne ighborhood  of  the  point t 2. Then Fu = T u ,  r v =  Fv, a n d c  = 0. If cont inuous  s t r e s s e s  o r  the  poten-  
t i a l  ~ a r e  given in the  t w o - s i d e d  ne ighborhood  of  the  point-t2, then c = - r  (ui) + r  (vi). Let  us now a s s u m e  that  
the  posi t ion  of  the  end of  the  s l ip  l ine L is known (e.g.,  t 2 co inc ides  e i t h e r  with a point  of  d i scont inu i ty  of the 
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boundary displacements or  s t r e s s e s ,  or  with an interchange point of the type of the boundary conditions, etc.). 
In this case  5 H -  0 and condition (3.13) is replaced by the following: xi(t 2) =x~, where the values of x~ aregiven.  

Therefore ,  the strengthened variat ional  principle permits  determination of both the discontinuous dis-  
placement field and the position of the line of discontinuity. However,  in the general  case  the lines obtained 
direct ly  f rom the variat ional  principle cannot be considered rea l  since the loading his tory of the mater ia l  is 
not taken into account in such an approach. Thus, in the case  of tmiaxial compress ion ,  the slope ofthe slip line 
equals ~/4 only for mg = 2 k l .  If fl is evaluated direct ly  for mg > 2k/without taking account of the gradual in- 
c r ease  in rag, then it turns out that the angle fl ~ ~/4 and depends on rag. Never theless ,  the lines (3.11) can be 
used to est imate the actual p rocess  of L-p las t ic  deformation.  

The total "potential" energy was used above as the functional. Analogous formulations for other func- 
tlonals as well (of the type of extra work, etc.) can also be considered. All the resul ts  are  easi ly extended to 
the case  when in addition to the tangential ,  a discontinuity in the displacement component normal  to the line is 
also allowed (the problem of the development of c racks  of a normal  discontinuity, etc.) [15]. Moreover,  analo- 
gous resul ts  hold even in the case of three-d imensional  s t rain (the displacement discontinuities are allowed on 
isolated surfaces) .  

4. In conclusion, let us examine the case when the L-plas t ic i ty  problem can be reduced to a boundary 
value problem for analytic functions. Let the domains outside the sl ip line be deformed l i nea r ly -e l a s t i ca l ly ,  
let ~, r be complex potentials in the domain Su, and ~, ~? potentials in thedomai  n S v. Let the pr imes denote 
the displacement and s t r ess  components in local coordinates with directions of the axes along the vec tors  ~, m 
(see Fig. 3). Then 

2u[ = (u i + iu~) e - ~  + (u i - -  iu2) e ~ ,  (4.1) 

2 ~  + 2~12 = (% + ~.~) + ( ~  -- ~ + 2 ~ )  e -2~. 

Analogous formulas  are  t rue in the domain S v also. The expression for the jump in the displacement compo- 
nent tangent to the slip line R =v 2 - u 2 with the continuity condition u I =v 1 taken into account can be converted to 
the fo rm 

i R  = (h  + i v~)e -~  - -  (u, + iu:2)e -i~. (4.2) 

The inverse ftmction can be constructed by means of the known function U R (R, xi) and t r ans fo rmed  to the func- 
tion ~2: 

Therefore ,  the continuity conditions in the left sides of (4.1) and the conjugate condition (4.3) should be satisfied 
on the line of possible slip. Let us express  the displacement and s t r e s s  components in the domains Su, S v by 
the Kolosov-Muskhel i shvi l i  formulas  [16], and let us use the relat ionships (4.1)-(4.3). Then all the conjugate 
conditions on the line L can be represented  in the form 

( •  - ~ '  - ~ )  e - ~  + ( •  - z~ '  - , )  e ~  = 

= - ~ - T ~ )  e - ~  + ( ~  - ~ '  - ~1) ~ 

((~' + ~') -- (zq D-~' § ~)  e-2i~ = (4.4) 

= (~' + ~ )  - ( ~ , ,  + ~%~) e - ~ %  

~• - ~)  - ~ '  - ~ ' )  - ( 7 ~ -  u  e - ~  = 

= 2 ,~e  I - ( ~ - ~ "  + ~ ' )  ~-~-~ ~- E ~ "  ' ~- ~;') e TM, z ] ,  

where p is the shear  modulus, u =  ( 3 - v ) / ( 1  + ~)for  the plane s t r e s s  state and ~'o=3-4v for  plane str~dn, and 
is a known f~nction (semiinverse formulat ion,  the lines of possible slip are k n o ~ ) .  

Therefore ,  the L-plas t ic i ty  problem reduces to seeking the analytic functions (p, r ~, 7, sat isfying bound- 
a ry  conditions on the outer  contour which a re  defined by the Kolosov-Muskhel i shvi l i  equations, and the conju- 
gate conditions (4.4) on the line L. 

Tile problem is also formulated analogously in the case  of severa l  lines of possible slip. An example of 
solving the boundary value problem is considered in [171. 
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